发新话题
打印

同角三角函数间的基本关系式

同角三角函数间的基本关系式

·平方关系:
  sin^2α+cos^2α=1
  1+tan^2α=sec^2α
  1+cot^2α=csc^2α
  ·积的关系:
  sinα=tanα×cosα
  cosα=cotα×sinα
  tanα=sinα×secα
  cotα=cosα×cscα
  secα=tanα×cscα
  cscα=secα×cotα
  ·倒数关系:
  tanα ·cotα=1
  sinα ·cscα=1
  cosα ·secα=1
  商的关系:
  sinα/cosα=tanα=secα/cscα
  cosα/sinα=cotα=cscα/secα
  直角三角形ABC中,
  角A的正弦值就等于角A的对边比斜边,
  余弦等于角A的邻边比斜边
  正切等于对边比邻边,
  ·[1]三角函数恒等变形公式
  ·两角和与差的三角函数:
  cos(α+β)=cosα·cosβ-sinα·sinβ
  cos(α-β)=cosα·cosβ+sinα·sinβ
  sin(α±β)=sinα·cosβ±cosα·sinβ
  tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)
  tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)
  ·三角和的三角函数:
  sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ
  cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ
  tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)
  ·辅助角公式:
  Asinα+Bcosα=(A²+B²)^(1/2)sin(α+t),其中
  sint=B/(A²+B²)^(1/2)
  cost=A/(A²+B²)^(1/2)
  tant=B/A
  Asinα-Bcosα=(A²+B²)^(1/2)cos(α-t),tant=A/B
  ·倍角公式:
  sin(2α)=2sinα·cosα=2/(tanα+cotα)
  cos(2α)=cos²(α)-sin²(α)=2cos²(α)-1=1-2sin²(α)
  tan(2α)=2tanα/[1-tan²(α)]
  ·三倍角公式:
  sin(3α)=3sinα-4sin³(α)
  cos(3α)=4cos³(α)-3cosα
  ·半角公式:
  sin(α/2)=±√((1-cosα)/2)
  cos(α/2)=±√((1+cosα)/2)
  tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα
  ·降幂公式
  sin²(α)=(1-cos(2α))/2=versin(2α)/2
  cos²(α)=(1+cos(2α))/2=covers(2α)/2
  tan²(α)=(1-cos(2α))/(1+cos(2α))
  ·万能公式:
  sinα=2tan(α/2)/[1+tan²(α/2)]
  cosα=[1-tan²(α/2)]/[1+tan²(α/2)]
  tanα=2tan(α/2)/[1-tan²(α/2)]
  ·积化和差公式:
  sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]
  cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]
  cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]
  sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]
  ·和差化积公式:
  sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]
  sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]
  cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]
  cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]
  ·推导公式
  tanα+cotα=2/sin2α
  tanα-cotα=-2cot2α
  1+cos2α=2cos²α
  1-cos2α=2sin²α
  1+sinα=(sinα/2+cosα/2)²
  ·其他:
  sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0
  cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及
  sin²(α)+sin²(α-2π/3)+sin²(α+2π/3)=3/2
  tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0
  cosx+cos2x+...+cosnx= [sin(n+1)x+sinnx-sinx]/2sinx
  证明:
  左边=2sinx(cosx+cos2x+...+cosnx)/2sinx
  =[sin2x-0+sin3x-sinx+sin4x-sin2x+...+ sinnx-sin(n-2)x+sin(n+1)x-sin(n-1)x]/2sinx (积化和差)
  =[sin(n+1)x+sinnx-sinx]/2sinx=右边
  等式得证
  sinx+sin2x+...+sinnx= - [cos(n+1)x+cosnx-cosx-1]/2sinx
  证明:
  左边=-2sinx[sinx+sin2x+...+sinnx]/(-2sinx)
  =[cos2x-cos0+cos3x-cosx+...+cosnx-cos(n-2)x+cos(n+1)x-cos(n-1)x]/(-2sinx)
  =- [cos(n+1)x+cosnx-cosx-1]/2sinx=右边
  等式得证
深海的冰冷覆盖了双鱼的眼泪         寂寞的曾经淹没了记忆的幻想

TOP

发新话题

当前时区 GMT+8, 现在时间是 2020-7-10 10:32
豫ICP备09033805号

Powered by Discuz! X3.0  © 2001-2018Comsenz Inc.
清除 Cookies - 联系我们 - 中学生学习网 - Archiver