“斜率”就是“倾斜的程度”。
过去我们在学习解直角三角形时,都科书上就说过:斜坡坡面的铅直高度h与水平宽度l的比值i叫做坡度;如果把坡面与水平面的夹角α叫做坡度,那么;坡度越大<=>α角越大<=>坡面越陡,所以i=tgα可以反映坡面倾斜的程度。
现在我们学习的斜率k,等于所对应的直线(有无数条,它们彼此平行)的倾斜角(只有一个)α的正切,可以反映这样的直线对于x轴倾斜的程度。
实际上,“斜率”的概念与工程问题中的“坡度”是一致的。
下面的概念就好理解了:
斜率,亦称“角系数”,表示一条直线相对于横坐标轴的倾斜程度。一条直线与某平面直角坐标系横坐标轴正半轴方向的夹角的正切值即该直线相对于该坐标系的斜率。
如果直线与x轴互相垂直,由于直角没有正切值,因此只有不与x轴垂直的直线才有斜率。
对于一次函数y=kx+b,k即该函数图像的斜率。
对于任意函数上任意一点,其斜率等于其切线与x轴正方向的夹角,即tanα.